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ABSTRACT 

In (his paper^-we^consider;an M/G/k queuelng model having 
finite capacity N . That Is, a model In which customers, 
arriving In accordance with a Polsson process having rate 

■h >   , enter the system If there are less than N others 
present when they arrive, and are then serviced by one of k 
servers, each of whom has service distribution G . Upon 
entering, a customer will either Immediately enter service 
If at least one server Is free or else join the queue If all 
servers are busy.  Our results will be Independent of the 
order of service of those waiting In queue as long as It Is 
supposed that a server will never remain Idle If customers 
are waiting. To facilitate the analysis, however, we wiH-, 
suppose a service discipline of «"first come first to enter 

service. **' 
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APPROXIMATIONS   IN FINITE CAPACITY 
MULTI-SERVER QUEUES WITH  POISSON ARRIVALS 

bv 

Shlrlev A. Nozaki and Sheldon M. Ross 

0.  INTRODUCTION 

In this paper, we consider an M/C/k queueing model having finite 

capacity N .  That is, a model in which customers, arriving in accordance 

with a Poisson process having rate \ , enter the system if there are less 

than N others present when they arrive, and are then serviced by one of 

k servers, each of whom has service distribution G . Upon entering, a 

customer will either immediately enter service if at least one server is 

free or else join the queue if all server» are busy. Our results will be 

Independent of the order of service of those waiting in queue as long as It 

is supposed that a server will never remain idle if customers are waiting. 

To facilitate the analysis, however, we will suppose a service discipline 

of "first come first to enter service." 

Our objective is to obtain an approximation for the average time spent 

waiting in queue by an entering customer.  This is done mainly by means of 

an approximation assumption, presented in Section 2, and used in Section 3 

to derive the approximation.  In Section 4, we let N ■ * and relate the 

approximation to the existing literature. 

isaa: 
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1.  BASIC DEFINITIONS AND FUNDAMENTAL EQUATION 

We shall need the following notation: 

P  : the steady state probability that there are  1  people in the 

system. 

S : a service time random variable, I.e.,  P{S j_ x) - G(x) . 

W : the average amount of time that an entering customer spends 

waiting in queue (does not Include service time). 

L. : the (time) average number of customers waiting in queue. 

V : the (time) average amount of work in the system, where the work 

in Che system at any time is defined to be the total (of all 

servers) amount of service time necessary to empty the system of 

all those presently either being served or waiting in queue. 

V : the average amount of work as seen by an entering arrival. 

We will make use of the following idea (previously exploited in such 

papers as [1], [2] and [8]) that if a (possibly fictitlonal) cost structure 

is imposed, so that entering customers are forced to pay money (according 

to some rule) to the system, then the following identity holds—namely, 

time average rate at which the system earns - average arrival rate 

(1) 
of entering customers * average amount paid by an entering customer. 

A heuristic proof of the above is that both sides of (1) times T is 

approximately equal to the total amount of money paid to the system by time 

T , and the result follows by dividing by T and then letting T -► « . 

f 
A rigorous proof along these lines can easily be established in the models 

we consider since all have regeneration points.  More general conditions 
under which it is true are presented in (1). 

■ • .—.. 
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Pv choosing appropriate cost rules, many useful formulae can be 

obtalnfu us special cases of (1).  For Instance, by supposing that each 

customer pays $1 per unit time while In service. Equation (1) yields that 

average number In service "Ml - PN)E(S] . 

Similarly, by supposing that each customer pays $1 per unit time while 

waiting In queue, we obtain from (1) that 

LQ " V(1 " VWQ • 

Also, If we suppose that each customer In the system pays $x per unit time 

whenever Its remaining service times id x , then (1) yields that 

(2) \(1 - PN)E SWQ + J (S - x)dx \(1 - PN)[E(S)WQ + ElS2]/2] 

where    W      is a random variable representing the   (limiting)  amount of  time 

chat the n      entering customer spends waiting in queue. 

Another important fact which we shall use is that,  since our arrival 

stream of customers  is a Foisson process,  the probability structure of what 

an arrival observes  is  identical to the steady state probability structure 

of  the system. 

1 
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IHK.  .MM'KOXIMAIION  ASSl'MniON 

Lot     C      Jtnu>te   tlu*  injut I Unlvim vl 1st r ilnit IIM\  v'l     C.   ,      ['hat   Is, 

also  K-t 

■     ( X )     •    I      *        '      ■ M -' •<      .1 v 

1     it     x -  v 
(x,y)  - 

lo It     x »»  v 

We assume throughout that JxdG (x) - ElS'l/JE(Sl  is finite.  We make the 

following approximation assumption. 

Approximation Assumption: 

Uiven that a customer arrives to find  i busy servers,  i s 0 , then 

at the time that he enters service, the remaining service times of the 

other  i - Mi.k)  customers being served has a Joint distribution that Is 

approximately that of independent random variables each having distribution 

G  . 
e 

Heuristic Remarks Concerning  the  A.A.: 

1.     In the   infinite capacity case,   the A.A.   appears  to be approximatelv 

true either   In heavy  traffic   Uhat   Is,   as     \E[S)  ■* k)  or  in light 

traffic   (.that   Is,   as     \E[Sl   • 0)   .     This   Is  so   In heavy  traffic 

since the  great  majority of arrivals will  encounter a  large queue 

and as a  result   the    k    departure processes   tone   for each serverl 

they  observe will  be approximately   Independent  de laved  renewal  pro- 

- -- ■        > ■   . ■ - 
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cesses.    Hence, considering those customers served by server    1  , 

It  follows that when they enter service they would have been 

observing    k -  1    independent delayed renewal processes for a 

large time, and the A.A.   follows since the  limiting distribution 

of excess in a renewal process  is just    G    . 

In extremely light traffic,  the great majority of arrivals 

will find either    0    or    1    busy servers.    Now,  since Poisson 

arrivals see the system as it  is  (averaged over all time),  it 

follows that arrivals  finding    1    server busy would encounter the 

same additional service time  (for the busy server)  as would random 

(and uniform)  time sampling of  the excess of a renewal process. 

Hence, the A.A.  follows  in light traffic from the renewal process 

(excess) result. 

Additional heuristics for the A.A.  follows from the fact that it 

is known to be  (exactly)   true when no queue is allowed  (see [9]). 

..,-,•. .^......................'.....->,. , r....^.L.- 
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3.  THE APPROXUUTION 

Since V  Is the average amount of work as seen by an arrival, It 

follows by conditioning upon whether or not an arrival enters the system 

that 

V ■ (1 - P.,)V + P., x (average work as seen by a lost customer). N e   N 

[ 

In accordance with our basic A.A., it sorms reasonable to approximate the 

2 
£[S 1 

average work as seen by a lost customer by k ögTsi + (N - k)E(S] . Hence, 

we have that 

(3) (1 - PN)Ve + PMlk 4] E[S 
2E(S + (N - k)E(Slj 

Now for any arbitrary customer that enters the system we have the following 

identity 

work as seen by the entering customer * 

k * time entering customer spends waiting in queue + R 

where R is defined to be the sum of the remaining service times of those 

being served when the customer enters service. Taking expectations yields 

that 

(4) V - kVL + E(R] . 
e    Q 

To obtain E[R] , we condition on B , the number of servers that are 

busy when the customer enters the system: 

■M ■—" i 
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(M 

KIK)  -  EUIR       B   1) 

ElB -    KB   ,k)l  |i|4    bv   the  A.A. 
e -11 > 

Now. 

(t>) 

\(l  -  P  )E[Sl   ■ average   number   of   busv  servers  as  seen  bv  an arrival 

-   (1 - P..)EIBJ   + kP     . 
N e N 

Also, 

17) :U(Be.k)l -  (l- PN- J/j)/^1 " V 

and so   from  (3)-(7)  and Equation  (2) we obtain  that 

(3) U       a      l ' _ _    \     ''■■■   '   ' ' 

^N - k)PNE(S] 

ei - pvuk - \E[sn 

Therefore, it remains to obtain P  and P  , 0 ^ J ^ k - 1 .  To do 

so, we impose the following tictitional cost structure—namely, that the  i 

oldest customers in the system pay $1 per unit time,  I ■ 1,^, .... k , 

where the age of a customer is measured from the moment it enters the 

system.  Hence, letting S ,S^, .... S. . denote k- 1  independent 

random variables each having distribution C     , we obtain from Equation (1^ 

that 
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P1 + 2P2 ••■ ... +  (i -   1)P1_1 + 1(1 - P0 -  ... - P1_1) 

-  X(P0 +  ...  + P^EIS) + ^P^MS - min  (s^.S* S*)) J 

(s - 2nd smallest of   (s*.   ....  S*+1))   I + XPi+l
E 

(9) . 

+ \P, _2Ens - (k - 1 - i)th smallest of (s*. .... S*_2)) 1 

_2)EI(S - (k - i)th smallest of (sj, .... S*_1)) 1 + X(I - PN - P0 - ... - Pk 

1-1, ..., k - 1 

Pj + 2P2 + ... + (k - l)Pk.1 + k(l - P0 - ... - Pk_l) - X(l - PN)E[S1 

(where x " { 1 • 
(0 if x < 0/ 

To» understand the above equations, suppose 

first that i < k . Now, as only the i oldest pay, it follows that when 

J customers are present the system earns at a rate j when J <. i end at 

a rate i when j > i . Hence, the left side of Equation (9) represents 

the average rate at which the system earns. On the other hand, an arrival 

finding fewer than i customers already In the system will immediately go 

into service and will pay a total amount equal to his service time; while 

an arrival finding j present, k - 1 >. j >. i will also go immediately 

into service but will only begin paying when j - i + 1 of the j others 

in service leave. Thus, in this latter case, under the A.A., the arrival 

would expect to pay a total of EMS - (j + 1 - i)th smallest of 

(s^S®, ..., Se,\\      .    Finally, if the arrival found more than k - 2 busy 
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Ht-rvers,   thou hv will  bt'uln puying at tor     k  -   I    ol   tin»«»' ciistumors   In 

aorvlc'o whon ho entern HorvUo  loavo  the  svKtora.     Tills explains  the  first 

k -   I    of   the  set  of I'.tjuat lou  il>).     The   last  equation  (when    1  - k)     easily 

follows  since   in  this caso each oustomor will   pay a  total   oqual   to his  tlrae 

in sorvioe. 

To simplify  the set of  Equation   (*M ,  wo will need  the  following  lonuna. 

l.emna  1; 

O ft* 
If     S,S.,   ...,  S      are  indepcnilent   random variables such  that     S    has 

distribution    G    and  the others    Ü     ,   then 
e 

■[< El (S -   1th smallest  of K ^f] ■ Vrr1 Eis'• 

Proof: 

Using the identity  (x - y>  - x - min ix.y') , we have that 

{(s 

S]   -  E min  U  , 

E  IS - Jth smallest   of     S 

E(S1   -  E min  (S   ,   Jth smallest   of     S 

1 *TI J 

n K)] 
Now, 

E min U  ,  Jth smallest  of     S*.  ....  Se) 

j   PiS  > alpljth snuillest  of    Ue S^)   •  njda 

-  f U - i'.(a))  "v    lr\c,  (u))l(l  - G  U))r"1da J Cm0\if    o 
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EIS Swj- (I -  y)       dv 

.1-1 

■^XW^HVtH1 

EIS) 

i-0 

r ••• 1 

which proves the lemma.■ 

It follows from Lemma 1 that the equations for P., and P  , 

0 ^ J ^ k - 1  depend on C only through E(Sl .  Hence, as the equations 

are exactly true when G Is exponential, it follows (since for fixed V     , 

It can be shown that the set of equations has at most one solution) that 

the P. ,0^J^_k-l have the same relationship to P  as when C.  is 

exponential.  Thus, we are left to determine P  , which we will approximate 

by the answer in the exponential case.  In other words, we shall use the 

exact result for P, iO^.Jlk-l,P  when C is exponential as our 

approximation.  This yields, from Equation (8), that 

(ICH 

ELsil V   ^E[Sl)j        ,N .  k)   E[Sl^E[SnN 

2E(S)    ~      . ,J Vk    klk 
-k klk N-k 

V liEiSlli 
.J-0       ^ 

Y   0E[Sl)j 

J-k    klk j-k 
(k -  \E(S1) 
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A.     TUK   INKINITK t'At'.UMTY CASK 

In  the   lntlnlte c«p<icity  CUH«?    N -   •■   ,   thf  approxlnuil Ion   (10^   reduce«, 

when    U:lSl       k  ,   to 

un    v^ - 
k.      J k-1 

:(k -   UUk -   \KlSl)' simDl 
(k - n:(k - \Kisi) 

Some remarks are in order: 

1.  In [A], Klngman obtained bounds on W  for the general queueing 

system Cil/C/k.  Wlten adapted Co the M/C/k case of Polsson arrivals, 

his inequalities are 

ELS'l        [E[S'l + kAJ - (E[Sir/kl 
2E(Sl(k - \E(Sl) " 2EIS1 

wg -     2(k - \ElS)) 

It   is easily verified  that  our approximation  for    VK     is con- 

sistent with Kingman's upper  and  lower bounds. 

2.     In  (5),  Klngman conjectured a heavy  traffic approximation  for    W 

in GI/G/k models.     In the special case of Poisson arrivals, his 

conlecture   is  that 

w „ \-Eis-) - rjEmr t !L when  xm] * k 

Calling the right side of the above K and our approximation, as 

given by (8^,  N - R , we have 

a 
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_-K_ . ÜLÜ +    EIS]      (k2 -   (AE[S1)2\ 
N-R kP. P.EIS2^ >k / 

k-1 
where    P    ■  1 -    I    P.   .    Hence,   since  In heavy traffic, 

k 0      J 

E[S] % k/\   ,  P.   « 1  ( we see chat our approximation is consistent 

with Kingman's heavy traffic conjecture. 

3. Numerical  tables for    L-    have been published by Hillier and Lo 

in the special case M/E /k, where    E      represents an Erlang 

distribution with   r   phases.    Table 1 compares our approximate 

formula for    LQ    (- XW )    with the Hillier-Lo tables. 

4. Another heavy traffic conjecture was given by Maaloe who in [6] 

conjectured that for the model M/E /k 

WÄ a 
XE[S21 

Q      2k(k - XE[S]) when    XE[Sl as k . 

As  the ratio between our approximation and the above approaches 

unity in heavy traffic, we see that our approximation is also 

consistent with this conjecture. 
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